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Abstract. A one-dimensional boson–fermion model is considered. It is shown that the model
is exactly solvable and the general Bethe eigenstates are constructed. On the basis of the Bethe
ansatz equations, the ground state and the thermodynamics are also given in some closed integral
equations.

1. Introduction

The Bethe ansatz [1] has proved to be a powerful method for tackling integrable models.
Great achievements have been reached in the last few decades both in the(1+1)-dimensional
quantum field theory [2, 3] and in condensed matter physics [4, 5]. Of the integrable family,
a very special class is theN -wave interaction model and its various quantized versions. The
study on the 1DN -wave interaction model has a long history. Exact results were obtained
by many authors for both the classical cases [6, 7] and the quantum cases [8–10]. However,
the quantum models considered in [8–10] are fundamentally unphysical for the ill-defined
spectrum of the bosons.

In this paper, we consider a physically meaningful model. The Hamiltonian of our
model reads

H =
∫ {

−ivF

∑
r=±,σ=↑,↓

rC†
r,σ (x)∂xCr,σ (x) + g

∑
σ

[b†
σ (x)C−,σ (x)C+,σ (x) + HC]

+ g√
2

[b†
0(x)(C−,↑(x)C+,↓(x) + C−,↓(x)C+,↑(x)) + HC]

}
dx (1)

wherevF is the Fermi velocity of the chiral fermions,C
†
r,σ (Cr,σ ) is the creation (annihilation)

operator of the fermions with the chiral indexr and the spin componentσ , b†
α (bα) (α = σ, 0)

is the creation (annihilation) operator of the spin-1 bosons with the spin componentα, and
g is the boson–fermion coupling constant. Obviously, the interaction between the bosons
and the fermions occurs only in the t-channel. Notice that although the bosons have no bare
kinetic energy, the spontaneous decay into fermions does allow them to behave itinerantly.
The factor 1/

√
2 in the last term is introduced to ensure the two-fermion scattering matrix

takes an universal form for the three triplets and thus the integrability of the model.
The contents of the present paper are as follows. In section 2 we construct the exact

eigenstates of the Hamiltonian (1) with the coordinate Bethe ansatz. The Bethe ansatz
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equations are obtained from the periodic conditions of the Bethe wave functions. The
ground-state properties are discussed in section 3. In section 4, we give the integral equations
of the thermodynamics. Some concluding remarks are given in section 5.

2. Bethe states

To construct the eigenstates of the Hamiltonian, it is convenient to give some simple
conserved quantities. From equation (1) we can see that the particle numbers

Nr =
∫ [∑

σ

C†
r,σ (x)Cr,σ (x) +

∑
α

b†
α(x)bα(x)

]
dx (2)

Mσ =
∫ [∑

r

C†
r,σ (x)Cr,σ (x) + 2b†

σ (x)bσ (x)

]
dx (3)

and the total momentum

P = −i
∫ [∑

r,σ

C†
r,σ (x)∂xCr,σ (x) +

∑
α

b†
α(x)∂xbα(x)

]
dx (4)

are conserved. Therefore, we may establish the common eigenstates ofH, Nr, Mσ , andP .
For simplicity, we denote the Bethe states by|N+, N−〉, but one should keep in mind that
Mσ andP are also conserved in these states.

To show the procedure clearly, we first consider theN+ = N− = 1 case. In this case,
the two fermions may form spin triplets or a spin singlet. Notice that only the spin triplets
have non-trivial hybridization with the bosons. A spin triplet can be written as

|1, 1〉t =
∫

dx dy 9
{σ1,σ2}
0 (x, y)[C†

+,σ1
(x)C

†
−,σ2

(y) + C+,σ2(x)C
†
−,σ1

(y)]|0〉

+
∫

dz 9
{σ1,σ2}
1 (z)b

†
(σ1+σ2)/2(z)|0〉 (5)

where(↑ + ↓)/2 = 0 is supposed. Acting the Hamiltonian (1) on|1, 1〉t we deduce the
following Schr̈odinger equations

−ivF(∂x − ∂y)9
{σ1,σ2}
0 (x, y) + 1

2g9
{σ1,σ2}
1 (x)δ(x − y)[δσ1,σ2 +

√
2δσ1,−σ2]

= E9
{σ1,σ2}
0 (x, y)

{2δσ1,σ2 +
√

2δσ1,−σ2}g9
{σ1,σ2}
0 (x, x) = E9

{σ1,σ2}
1 (x)

(6)

whereE is the eigenvalue. The above equations can be solved by the following ansatz:

9
{σ1,σ2}
0 (x, y) = eikx+iqy [St (k − q)θ(y − x) + θ(x − y)]

9
{σ1,σ2}
1 (x) = S+

σ1,σ2
(k − q)9

{σ1,σ2}
0 (x, x)

(7)

with

St (k − q) = k − q + ic

k − q − ic

S+
σ1,σ2

(k − q) = g/vF{2δσ1,σ2 + √
2δσ1,−σ2}

k − q

E = vF(k − q)

(8)
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wherec = g2/4vF. Now we clear that the factor 1/
√

2 in the last term of the Hamiltonian is
to ensure the spinSU(2) invariant and the universal form of the scattering matrixSt (k −q)

for the three triplets. Since the spin singlet state does not contain boson, we can easily
deduce its scattering matrix to beSs = 1. Thus the scattering matrix of two electrons with
different moving directions takes the form

Sr,−r (k − q) = k − q + icp12

k − q − ic
(9)

wherep12 = 1 for spin triplets andp12 = −1 for a spin singlet. In fact,p12 is the eigenvalue
of the spin exchange operatorP12. We proceed to discuss theNr = 2, N−r = 0 case. The
eigenstates forN+ = 2, N− = 0 can be written as

|2, 0〉 =
∫

dx1 dx2 9{σ1,σ2}(x1, x2)C+,σ1(x1)C+,σ2(x2)|0〉 . (10)

The Schr̈odinger equations thus reads

−i(∂x1 + ∂x2)9
{σ1,σ2}(x1, x2) = E9{σ1,σ2}(x1, x2) . (11)

The above equation has a general solution

9{σ1,σ2}(x1, x2) = eik1x1+ik2x2[S+,+(k1 − k2)θ(x2 − x1) + θ(x1 − x2)]

+eik1x2+ik2x1[S+,+(k1 − k2)θ(x1 − x2) + θ(x2 − x1)]

E = vF(k1 + k2) .

(12)

Also, these states do not involve bosons. Since the Schrödinger equation is only a first-order
differential equation, the scattering matrix can be chosen arbitrarily. However, to ensure
integrability, the Yang–Baxter equation

Sr1,r2(k1, k2)Sr1,r3(k1, k3)Sr2,r3(k2, k3) = Sr2,r3(k2, k3)Sr1,r3(k1, k3)Sr1,r2(k1, k2) (13)

must be satisfied. A natural choice ofSr,r is thus

Sr,r (k1 − k2) = eiφr (k1−k2)
k1 − k2 + icp12

k1 − k2 + ic
. (14)

The phase factorφr(k) is real for k real. It cannot be determined uniquely for the linear
dispersion relation of the present model.

We now turn to the construction of the general eigenstates with arbitraryNr . For
simplicity, we consider only the highest-weight solutions in the spin sector. Since the total
spin is a good quantum number, we can use the spin-flip operator

F =
∫ {∑

r

C
†
r,↓(x)Cr,↑(x) +

√
2[b†

0(x)b↑(x) + b
†
↓(x)b0(x)]

}
dx (15)

to obtain the other eigenstates. Note [F, H ] = 0. For the highest-weight states, the
quantities

Nrσ =
∫

{C†
r,σ (x)Cr,σ (x) + b†

σ (x)bσ (x)} dx (16)

are also conserved. Thus the general highest-weight eigenstate|N+, N−〉 can be written as

|N+, N−〉 =
min [Nr,↑]∑

m↑=0

min [Nr,↓]∑
m↓=0

9{σ }±
m↑,m↓(x1, . . . , xN+−M |y1, . . . , yN−−M |z1, . . . , zm↑ |w1, . . . , wm↓)
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×φ{σ }±
m↑,m↓

N+−M∏
i=1

C
†
+,σi

(xi) dxi

N−−M∏
j=1

C
†
−,σN++j

(yj ) dyj

×
m↑∏
l=1

b
†
↑(zl) dzl

m↓∏
m=1

b
†
↓(wm) dwm|0〉 (17)

whereM = m↑ +m↓ and|0〉 is the pseudo-vacuum defined byCr,σ |0〉 = bα|0〉 = 0. Notice
that theC

†
r,σ in the products have a well-defined order. That means that ifi < i ′, C†

r,σi

must be in the left side ofC†
r,σi′ . The symbol{σ }± indicates all possible choices of the

spin configurations with the total spin conserved in each channelr. The prefactorφ{σ }±
m↑,m↓

is introduced to cancel the repeat of the ‘fusion–decay processes’:

φ{σ }±
m↑,m↓ =

{∏
σ

[
mσ !

∏
r

Nrσ !

]}−1

. (18)

In what follows we shall omit the superscript{σ }±, but one should keep in mind that the total
spin of the wave function is conserved. The Schrödinger equation in the first quantization
form is

−ivF(
∑

i

∂xi
−

∑
j

∂yj
)9m↑,m↓(x1, . . . , xN+−M |y1, . . . , yN−−M |z1, . . . , zm↑ |w1, . . . , wm↓)

+g
∑
ij

Rij9m↑+1,m↓(· · · , xi−1, xi+1, . . . | . . . , yj−1, yj+1, . . . |xi, . . . | · · ·)

×δ(xi − yj )

+g
∑
i ′j ′

Ri ′j ′9m↑,m↓+1(. . . , xi ′−1, xi ′+1, . . . | . . . , yj ′−1, yj ′+1, . . . | · · · |xi ′ , . . .)

×δ(xi ′ − yj ′)

+g

m↑∑
l=1

9m↑−1,m↓(. . . , zl|zl, . . . | . . . , zl−1, zl+1, . . . | · · ·)

+g

m↓∑
m=1

9m↑,m↓−1(· · · , wm|wm, . . . | · · · | . . . , wm−1, wm+1, . . .)

= E9m↑,m↓ (19)

whereRij = (−1)N+−M+i+j−1δσi ,σN++j
.

From the experience of the two-body case, we know that the9m↑,m↓ are the ‘contraction’
of 90,0 [11] which takes the form

90,0(x1, . . . , xN+|y1, . . . , yN−) =
∑
P,Q

AP (Q) exp

[
i

N∑
j=1

sPj
tQj

] N∏
j=1

δ
γPj

rQj
θ(tQ1 < · · · < tQN

)

(20)

whereN = N+ + N−; P, Q are the permutations of(1, . . . , N) and

{s1, . . . , sN } = {k1, . . . , kN+; q1, . . . , qN−} {t1, . . . , tN } = {x1, . . . , xN+; y1, . . . , yN−}
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γj = ±1 are the chiralities of the momenta{k}, {q}, γi = 1 for {k} and γj = −1 for {q}.
The AP (Q) are constants which satisfy

AP (. . . , Qi, . . . , Qj , . . .) = −PijAP (. . . , Qj , . . . , Qi, . . .) (21)

for the Fermi statistics.
For an eigenstate, the functions9m↑,m↓ are determined by

A...,Pi ,...,Pj ,...(. . . , Qi, . . . , Qj , . . .) = Sri ,rj (sPi
− sPj

)A...,Pj ,...,Pi ,...(. . . , Qj , . . . , Qi, . . .) (22)

9m↑,m↓ =
∑
Q,P

m↑∏
l=1

RijS
+
↑,↑(k(l) − q(l))

m↓∏
m=1

Ri ′j ′S+
↓,↓(k(m) − q(m))

×90,0[Q, P ](. . . , {xi = yj = zl}, . . . , {xi ′ = yj ′ = wm}, . . .) (23)

wherek(l), q(l) andk(m), q(m) are the momenta carried by the fermions atxi, yj andxi ′ , yj ′

respectively;90,0[Q, P ] is the value of90,0 in the region [Q, P ]. For details of the
construction of (23) we refer the readers to [11]. The eigenvalue associated with the state
is

E = vF

N+∑
i=1

ki − vF

N−∑
j=1

qj . (24)

Below we use the periodic conditions

90,0(. . . , xi, . . . , yj , . . .) = 90,0(. . . , xi + L, . . . , yj , . . .) = 90,0(. . . , xi, . . . , yj + L, . . .)

(25)

to derive the Bethe ansatz equations. Obviously, the equations

9m↑,m↓(. . . , xi, . . . , yj , . . .) = 9m↑,m↓(. . . , xi + L, . . . , yj , . . .)

= 9m↑,m↓(. . . , xi, . . . , yj + L, . . .) (26)

are satisfied for9m↑,m↓ are nothing but the contraction of90,0. According to Yang [12],
the spectrum of the Hamiltonian is determined by the following eigenvalue problem:

eikiLζ0 = S+,+(ki − ki+1) · · · S+,+(ki − kN+)S+,+(ki − k1) · · · S+,+(ki − ki−1)

×S+,−(ki − q1) · · · S+,−(ki − qN−)ζ0

eiqj Lζ0 = S−,+(qj − ki+1) · · · S−,+(qj − kN+)S−,+(qj − k1) · · · S−,+(qj − ki)

×S−,−(qj − q1 · · · S−,−(qj − qj−1)

×S−,−(qj − qj+1) · · · S−,−(qj − qN−)ζ0 .

(27)

The above equations readily give the Bethe ansatz equations

eikiL =
N+∏
i ′=1

exp[iφ+(ki − ki ′)]
M↓∏
α=1

ki − 3α − 1
2ic

ki − 3α + 1
2ic

N−∏
j=1

ki − qj + ic

ki − qj − ic

eiqj L =
N−∏

j ′=1

exp[iφ−(qj − kj ′)]
M↓∏
α=1

qj − 3α − 1
2ic

qj − 3α + 1
2ic

N+∏
i=1

qj − ki + ic

qj − ki − ic

N+∏
i=1

ki − 3α − 1
2ic

ki − 3α + 1
2ic

N−∏
j=1

qj − 3α − 1
2ic

qj − 3α + 1
2ic

= −
M↓∏
β=1

3β − 3α − ic

3β − 3α + ic

(28)

whereL is the length of the system andM↑ > M↓ is supposed.
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3. The ground state

Different choices ofφr(k) certainly give different physical states and even change the
operator content of the theory [13–15]. In this paper, we consider onlyφr(k) = 0 case.

From equations (28) we can see thatki andqj may have conjugate pair solutions when
L → ∞

ki = λi ± 1
2ic qj = ωj ± 1

2ic {λi; ωj } = {3α} . (29)

We considerN+ = N− = M↑ = M↓ case. For simplicity, we putN+ being even. This
allow us to obtain an unique ground state. The Bethe ansatz equations with equation (29)
thus reduce to

e2iλiL = −
N/4∏
j=1

λi − λj − ic

λi − λj + ic

N/4∏
l=1

{
λi − ωl + ic

λi − ωl − ic

} {
λi − ωl + 2ic

λi − ωl − 2ic

}

e2iωlL = −
N/4∏
m=1

ωl − ωm − ic

ωl − ωm + ic

N/4∏
j=1

{
ωl − λj + ic

ωl − λj − ic

} {
ωl − λj + 2ic

ωl − λj − 2ic

}
.

(30)

As the spectrum of the present model is not bounded from below, a cutoff should be used.
We put |λi |, |ωl| 6 K. Asymptotically, we shall take the limitK → ∞. To obtain the
lowest energy state, we should chooseλi < 0 andωl > 0. In the thermodynamic limit, the
ground state is described by the following integral equations:

ρ+,g(λ) = 1

π
−

∫ 0

−K

a2(λ − λ′)ρ+,g(λ
′) dλ′ +

∫ K

0
[a2(λ − ω) + a4(λ − ω)]ρ−,g(ω) dω

(31)

ρ−,g(ω) = 1

π
−

∫ K

0
a2(ω − ω′)ρ−,g(ω

′) dω′ +
∫ 0

−K

[a2(ω − λ) + a4(ω − λ)]ρ+,g(λ) dλ

whereρ+,g(λ) andρ−,g(ω) are the density distributions ofλ andω; the kernelsan(λ) are
given by

an(λ) = 1

π

1
2nc

λ2 + ( 1
2nc)2

. (32)

The ground-state energy takes the form

Eg/L = 2
∫ 0

−K

λρ+,g(λ) dλ − 2
∫ K

0
ωρ−,g(ω) dω . (33)

Thus the Fermi sea consists of all negativeλ states and all positiveω states are filled up to
the cutoff. The dressed energy [16] in our case satisfies

ε+(λ) = 2vFλ −
∫ 0

−K

a2(λ − λ′)ε+(λ′) dλ′ +
∫ K

0
[a2(λ − ω) + a4(λ − ω)]ρ−,g(ω) dω

(34)

ε−(ω) = −2vFω −
∫ K

0
a2(ω − ω′)ε−(ω′) dω′ +

∫ 0

−K

[a2(ω − λ) + a4(ω − λ)]ρ+,g(λ) dλ .

Note that the dressed energy is also unbounded from below whenK → ∞. However, the
derivativesε±′ and the densitiesρ±,g are convergent forK → ∞. This gives meaningful
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collective excitations with sound velocity [16]

v = ε′+(0)

2πρ+,g(0)
. (35)

4. Thermodynamics

We shall construct the thermodynamics of the present model by following the method
developed by Yang and Yang [17] and Takahashi [18]. From the Bethe ansatz equations we
can see that the solutions are grouped as Cooper pairs:

k±
α = 3′

α ± 1
2ic q±

β = 3β” ± 1
2ic (36)

real k, q and3 strings

3n
γ,j = 3n

γ + 1
2ic(n + 1 − 2j) j = 1, 2, . . . , n (37)

where3′
α, 3′′

β and3n
γ are real. Substitute the above solutions into equations (28) and take

the thermodynamic limitL → ∞, N → ∞. We obtain the following integral equations:

ρ1(k) + ρh
1(k) = 1

2π
− [1]ρ1s(k) + [3]ρ2s(k) + [2]ρ2(k) −

∞∑
n=1

[n]σn(k)

ρ2(q) + ρh
2(q) = 1

2π
− [1]ρ2s(q) + [3]ρ1s(q) + [2]ρ1(q) −

∞∑
n=1

[n]σn(q)

ρ1s(k) + ρh
1s(k) = 1

π
− [2]ρ1s(k) + A13ρ2s(k) + [3]ρ2(k) − [1]ρ1(k)

ρ2s(q) + ρh
2s(q) = 1

π
− [2]ρ2s(q) + A13ρ1s(q) + [3]ρ1(q) − [1]ρ2(q)

[n]{ρ1(3) + ρ2(3)} = σh
n (3) +

∞∑
m=1

Anmσm(3)

(38)

whereρi, ρ
h
i denote the densities ofk(q) andk(q) holes,σn, σ

h
n denote the densities of the

n string andn-string holes,ρis, ρ
h
is denote the density distributions of the Cooper pairs, [n]

is a integral operator with the kernelan(k − k′) and

Anm = [|m − n|] + 2[|m − n| + 2] + · · · + 2[|m + n − 2|] + [m + n] . (39)

Note that k, q take values in the interval [−K, K] and 3 takes values in the interval
(−∞, ∞). After some manipulations we get the thermo-potential as

�/L = − T

2π

2∑
i=1

∫
ln{1 + ζ−1

i (k)} dk − T

π

2∑
i=1

∫
ln{1 + ζ−1

is (k)} dk (40)
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where theζi(k), ζis(k) are determined by the following integral equations:

ln ζ1(k) = vFk − H − A

T
− [2] ln{1 + ζ−1

2 (k)} + [1] ln{1 + ζ−1
1s (k)}

−[3] ln{1 + ζ−1
2s (k)} −

∑
n

[n] ln{1 + η−1
n (k)}

ln ζ2(k) = −vFk − H − A

T
− [2] ln{1 + ζ−1

1 (k)} + [1] ln{1 + ζ−1
2s (k)}

−[3] ln{1 + ζ−1
1s (k)} −

∑
n

[n] ln{1 + η−1
n (k)}

ln ζ1s(k) = 2(vFk − A)

T
+ [1] ln{1 + ζ−1

1 (k)} + [2] ln{1 + ζ−1
1s (k)}

−[3] ln{1 + ζ−1
2s (k)} − A13 ln{1 + ζ−1

2s (k)}

ln ζ2s(k) = −2(vFk + A)

T
+ [1] ln{1 + ζ−1

2 (k)} + [2] ln{1 + ζ−1
2s (k)}

−[3] ln{1 + ζ−1
1s (k)} − A13 ln{1 + ζ−1

1s (k)}

ln{1 + ηn(3)} = 2nH

T
+

∞∑
m=1

Anm ln{1 + η−1
m (3)}

+[n]{ln{1 + ζ−1
1 (3)} + ln{1 + ζ−1

2 (3)}}

(41)

with the boundary condition

lim
n→∞{[n + 1] ln(1 + ηn) − [n] ln(1 + ηn+1)} = −2H

T
(42)

where H and A are the magnetic field and the chemical potential, respectively.
Equations (41) with the condition (42) is closed. From equation (41) we can see that
ζ1(k) = ζ2(−k), ζ1s(k) = ζ2s(−k). This may simplify equations (41).

For theH = 0 andT = 0 case, the spin degrees of freedom seem to be frozen via
the spin gap of the pair states. The charge sector of the system at zero temperature is
conformally invariant with the conformal anomalyc = 1. According to the predictions of
the conformal field theory [19], the density of the free energy at low temperatures takes the
following form:

f (T ) = πT 2

6v
+ o(T 2) (43)

wherev is the sound (plasmon) velocity given by equation (35).

5. Conclusion

In this paper we consider a one-dimensional t-channel boson–fermion model. It is shown
that this model can be solved via Bethe ansatz. The electrons in different chiral branches
may form Cooper-pair states with proper choices of the phase factorφr . This is not very
strange because in the Bethe ansatz solvable models, the bound states usually correspond
to the conjugate complex roots of the Bethe ansatz equations. This means the Cooper pair
must be formed by two electrons near the same Fermi point. The situation of our model is
very similar to that of the multi-channel Kondo problem in which the flavour bound states
are formed via dynamics [20].
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